
Solomon Mikael

1

Development of Remote Concatenation & Monitoring Tools for CDFII
Production Farm

Solomon Mikael

The Collider Detector at Fermi Laboratory

Abstract

The CDF detector is a vital part
of the physics program at Fermi
Laboratory. Monitoring the farm is the
web based Tikiwiki pages. The tiki
pages provide vital information to the
users allowing the farm to operate
smoothly. The concatenation of
reconstructed files depends on farm.
Modifications were made to both the
monitoring and concatenation system to
make both systems perform efficiently.
This paper constitutes the final project
for he SIST program.

Introduction

Higher energy, higher intensity
particle beams, and advanced detectors
in high energy physics (HEP1) have led
to the collection of larger volumes of
data. The Collider Detector at Fermilab
(CDF2) has improved its data acquisition
capacity in the Run II program. The

computing facility was also upgraded for
processing larger volumes of data. The
CDF II experiment began collecting data
in 2000. The peak rate of data recording
is 40MB/s. The total volume of raw data
collected by the experiment is roughly
0.5 petabytes. This number is expected
to increase dramatically in the future. As
a result of this, the data management
becomes a very important part of the
experiment. This paper will describe the
main hardware, software, monitoring,
and control components of the CDF
production farm.

The primary objective is to
implement a method that will improve
the disk write speed. Additionally
modifications were made to the
monitoring and concatenation systems of
the farms.

CDF Experiment

The CDF (collider detector
experiment at FermiLab) is an

Solomon Mikael

2

international collaboration involving
many universities and national
laboratories. The 100 ton CDF detector
is a large general purpose solenoidal
detector which combines precision
charged particle tracking with fast
projective calorimetry and fine grain
muon detection. CDF must manage is
made by the collisions or the protons and
anti-protons. Of the collisions on a few
are hard collisions, those which make
energetic particles which go off at large
angels from the beam allowing it to pass
through the detector. A charged particle
will be observed the rest can be tracked
by taking into account the transverse
momentum based on the conservation of
momentum. Also particles that are not
detected in the initial layers are detected
in the calorimeter. Not all the energy can
be accounted for some particles will
inevitable escape detection.

Figure 1 (this is a diagram of the CDF
detector)

To observe the particles generated by the
collision there are several detector
systems. Each detector system is best at
detecting or interacting with a certain
particle. Of the millions of collisions per
second only a few of them give large
angles. The detectors record electronic
information on the 1000000 channels.
Based on a few of the channels

preliminary information is provided.
Triggers make a decision if a collision is
interesting or not. As the precision and
efficiency of the detector increases so is
the amount of information it’s able to
draw from these collisions. As a result a
data management system is imperative
for CDF to operate.

The CDF Farm

The primary goal of CDF
Production Farm is to perform
computing and network intensive tasks
in a cost effective manner. The data
processing model for the CDF
experiment is based on reconstruction of
parallel data streams taken with different
combinations of physics event triggers.
Data processing consists of large clusters
of Linux computers with data movement
managed by CDF data handling system.
The high energy physics experiments
(HEP) being done at CDF generated
enormous amounts of data and is
expected to increase in the future. CDF’s
challenge was in finding a way to
manage the large flow of data through
the computing nodes. Condor is the
software that manages, controls, and
monitors the CDF production farm.
Presently the production farm consists of
150 dual CPU PC’s with a total
computing power of about 800 GHz.
The main software components of the
farm architecture are SAM and CAF.
SAM3 stores and retrieves the metadata
associated with files. CAF is control
system used by all farms inside the
experiment for batch job submission and
access to the CDF data management
system and databases. The new SAM
data production system is suitable for job
submission to any computing facility in
the world that uses the CAF interface

Solomon Mikael

3

with direct access to the SAM data
handling and database connection. The
production farm is setup to take
advantage to grid computing was a CAF
headnode and SAM stations. The mass
storage system has three major parts: the
Enstore system which is used to access
data on the tapes, dCache which
provides a system for storing and
retrieving huge amounts of data which is
distributed among a large number of
nodes under a single virtual filesystem,
and PNFS which is a software used to
map all files stored in the root to a Unix
like namespace.

Software Products

For CDF farms to accomplish its
goals it needs many individual programs
to operate. Each program contributes a
job to the entire system of the farm. In
the end it is this system that
programmers and users are familiar with.

I. Condor

The Condor Project4 is one of the
systems used in the farm. The goal of the
Condor Project is to develop, implement,
deploy, and evaluate mechanisms and
policies that support High Throughput
Computing (HTC) on large collections
of disruptively owned computing
resources. This system enables scientists
and engineers to increase their
computing throughput. Condor achieves
its goal by implementing a specialized
work load management system for
computer intensive jobs. The batch
system in Condor provides a job queuing
mechanism, scheduling policy, priority
scheme, resource monitoring, and
resource management. After submission
of a job, in series or in parallel, Condor
places them into a queue and chooses

when and where to run the jobs based
upon a policy, monitors the jobs
progress, and finally informs the user
when the job is complete. Condor can be
used to manage a cluster of dedicated
computer nodes and harness wasted
CPU power from idle desktop
workstations. A big advantage of using
Condor is that it does not require a
shared file system across machines.

II. CVS

The concurrent version system
also known as CVS5 is another software
tool used by the farms. CVS is a version
control system. It allows one to record
the history of source files. For example
is there is a bug in a program after it has
been modified. CVS allows for retrieval
of the old version to see exactly what
change caused the bug. CVS stores all
the versions of a file in a single file
which only stores the difference between
versions. The software helps insulate
different developers from each other so
all developers work in their own
directory avoiding overwriting others
changes. The files are stored in a
centralized repository which stores a
complete copy of all the files and
directories which are under version
control.

III. SAM

For the CDF Farms to operate
efficiently there is a need for a system
that delivers files and keeps track of the
files that have been analyzed. A system
that does just this is called SAM or
sequential data access via metadata. All
the files accessible in a UNIX system
area arranged in one big tree the file
hierarchy is rooted at /. These files can
be spread out over several devices. SAM

Solomon Mikael

4

mitigates the problem of one person
hogging the tape drive and/or flooding
the tape system. SAM is a data handling
system organized as a set of servers
which work together to store and retrieve
associated metadata (data that is used to
describe other data which may describe
how, when, and by whom the data was
received, created, accessed, and
modified) including a complete record
of the processing which has used the
files. SAM is able: to track locations and
comprehensive metadata for each file in
the system, provide storage utilities to
add a file to a permanent storage
location, deliver files on request to
systems that have deployed the file
delivery components of the SAM
system, provide methods for job
submission which are coupled to the file
delivery mechanism and can utilize
location and system information for
performance optimization, and track
processing information permitting
processing to be organized on the basis
of the consumption history of a
particular data set and allows the
construction of processing jobs which
use information which other files have
processed successfully.

IV. Data Base

Structured Query Language
(SQL) implements a database and
interfaces on a computer called a
database server. A database is a
hierarchy of increasingly complex data
structures. MySQL7 has an ability to
handle an unlimited number of
simultaneous users and handle millions
or records making it essential to the CDF
Farms.

A few of the requirements of the
CDF production farm are high

throughput rate, I/O capability, easily
configurable system, and efficient error
handling. To make these happen the
farm must monitor the hardware
performance including status reporting
and tuning the software of the
production farm. The production farm
web interface (PFWI) will parse,
calculate, and display all major
characteristics of the farm. The farm’s
performance indicators change in real
time so the interface reports online
results. All steps of processing heavily
rely on information from the Oracle
database. The worker nodes retrieve:
calibration, geometric constants, and
reconstructed files. The intermediate
output on the worker nodes is declared
to the database in order to avoid lost or
duplicated events.

Figure 2 (the basic schematic of the
CDF Farm)

The CDF farm begins raw data
processing by accessing the data of the
tape storage device. The collision
information is stored on the tapes until
this point. Then next step is
reconstruction of the data.
Reconstruction interprets the data that
was collected to make it useful for
physics analysis. The reconstructed data
is then sent to the stagers. In some cases
if the files are already 1-2 GB is size
there is no need for concatenation. For

Solomon Mikael

5

the instances where this is not true the
concatenation begins on the stagers. The
stagers then send the reconstructed and
concatenated data back to the tape drives
for storage and later access by
physicists.

Storage Speed

The issue of increasing the rate
the data is written to the tape storage has
many factors. In the configuration when
the concatenated and the tape upload are
running simultaneously the tape upload
speed is affected dramatically.

Figure 3 (the x –axis represents the
MB/s while the y –axis represents the
number of events that were sent at that

particular speed the majority of the
events seem to congregate around 12

MB/s)

Figure 4 (a majority of the events
congregate around 25 MB/s)

In the present scheme the concatenator
and tape uploader are running at the
same time resulting in limited I/O from
the stagers. Disk access is directly
related to the number of simultaneous
I/O operations from the disk RAID 5.
The two above figures demonstrate two
different scenarios. The scenario in
Figure 3 demonstrates when the stager is
running concatenator as well as the tape
uploader. The graphs x – axis represents
the transfer rate in MB/s while thy y –
axis represents the number of events that
were transferred at a particular speed.
The majority of the events that are being
sent are on average being transferred at
an average rate of about 12 MB/s. In
Figure 4 the concatenation is removed
from the stagers so the I/O to the disk
RAID 5 is limited to the transfer of the
data on the stagers. The difference is
dramatic. The number of events that are
send at a speed of 25 MB/s or higher
constitute the majority of the events.
This change nearly doubles the transfer
rate of the information. The essence of
my project at CDF entailed removing the
concatenation to the workers to enable
the stagers to achieve higher transfer
rates to the disk storage.

Proposed Structure

To improve the tape write speed
on the CDF farm it was imperative the
concatenation be moved to another
location. The proposed structure is
displayed in Figure 5.

Solomon Mikael

6

Figure 5 (the schematic of the proposed
structure of the concatenation process)

 The stagers are responsible for running
the python script mergeSubmit.py. This
code will analyze the input directory.
The reason for this is so it can make a
list of the input files needed for each of
the production datasets. The list of input
files is inserted in a file called a Tool
Command Langue (.tcl) file which
drives a binary code for concatenation.
Once this file has been composed a job
can be submitted to CAF. CAF divides
the job into sessions and assigns to the
workers. The workers will be held with
the responsibility of concatenation. Once
on the workers the script copies the input
files. It knows where the files are
because of the constructed .tcl file.
Additionally when the submission to the
worker is made certain parameters are
established to specify certain parameters
of the specific submission. The binary
code for the concatenation is then run.
The goal is creating files that are 1-2 GB
in size. The reason for this is to optimize
the speed that the data is being written to
the tape drives. The output files are then
written back to the stager. An advantage
of this process is the output file
generated is on the worker. This allows

for it to be accessed by other mean
instead of it being localized on a stager.
For this configuration the output file is
then written back to the stager. This
system is intended to circumvent the
problem of the RAID 5 getting
numerous I/O calls which affect the rate
data can be transmitted to the tape
drives.

#!/bin/bash

name=`basename $0`

. ./cdfopr/scripts/common_procedures

. ./cdfopr/scripts/parse_parameters $* > temp_parse_log

echo $TCL_FILE
echo $PARAM_USER
echo $PARAM_HOST
echo $PARAM_PATH

cmd="fcp -c ${RCP}
${FCP_USER}@${FCP_HOST}:${PARAM_PATH}/${TCL_FILE}
.";
$cmd
STATUS=$?;

if[STATUS -ne 0];then
 echo "$TCL_FILE was not able to be copied"
 exit 1;
fi

for file_loc in ` temp.awk –v num=$SEGMENT_NUMBER `;do

 cmd="fcp -c ${RCP}
${FCP_USER}@${FCP_HOST}:${file_loc} . ";
 $cmd
 STATUS=$?;

 if [STATUS -ne 0];then
 echo "$file_loc was not able to be copide
 fi

done

Figure 6 (find_tcl.sh code used to extract
the corresponding location of the input

files and send the files to the appropriate
worker)

#!/bin/awk

BEGIN {
 flag = 0;
}

/SEGMENT_NUMBER/ {
 if ($5 == seg) {
 flag = 1
 }
}

Solomon Mikael

7

/include/ {
 if (flag == 1) {
 print $0
 }
}

{
 if ($1 == "}") {
 flag = 0
 }
if (($4 == "==") && (ENVIRON["SEGMENT_NUMBER"] ==
$5)) {print $0}
}

Figure 7 (temp.awk code that would
extract the information needed from the

.tcl file)

Figure 6 displays a short excerpt
of the code used to perform the proposed
task. The code is a combination of shell
scripting and the awk editor. The awk
editor helped in parsing the .tcl file to
extract the location of the input files
associated with a specific project. This
code would be implemented right after
step 2 on the stager in Figure 5. While
this entire process is taking place the
farm is being monitored. Monitoring is
an essential part of the CDF farms. It
enables the farm members to maintain
the entire farm system in an efficient
manner.

Farm Control & Monitoring

The CDF Farm is a huge system
that requires the attention on many
individuals. To take the most advantage
of those individuals time there needs to
be an intuitive interface. Farm
maintenance is significantly simplified
by introducing wiki-based farm projects.
Tikiwiki8 software is an extremely
efficient tool for webbased
documentation. Additionally its
underlying database serverkeeps a
history of all changes to the Farm
Projects. The tiki pages with Project
configurations give the possibility to:

keep track of all existing projects, start
or stop the projects, change resource
sharing between projects. Several of the
pages that the farms relied on needed
slight modification to improve the
overall presentation of the information
on the tiki pages.

Figure 8 (tiki page initially)

Figure 9 (tiki page after modifications)

Figure 8 shows the initial orientation of
the page. This information is all
presented in an unclear manner and there
isn’t a way to contact the individual
running the particular project. To make
these edits possible a few modifications
needed to be made to include columns
and remove others. This was all done
using the online tiki editor. Another
group of pages were modified to make

Solomon Mikael

8

the information more presentable.
Instead of using the online tikiwiki
editor python script was edited. The
script itself was made to interface with
html format. Also some adjustments
were made including: removing
columns, adding jobid information, and
fixing hyperlinks. Figures 10 and 11
show the page before and after
respectively.

Figure 10 (web page initially)

Figure 11 (web page after modifications)

Another python script that was edited is
df_disk.py. The intention with this script
was to display the disk space on the 32
partitions on the different servers. This
expedited the process of obtaining the
server information. The code and the

respective result are displayed in Figures
12 and 13.

Figure 12 (info on the partitions which
are updated with cron jobs)

p = string.find(output, '/export/data4')
usage = string.strip(output[p-24:p])
fp.write(""" fncdfsrv5 %20s /export/data4 """ % usage)
fp.write("\n")
percentage = string.strip(output[p-5:p-2])
if string.atoi(percentage) > 90 : IsFull=1

Figure 13 (an excerpt of code that helps
generate the partition information in

Figure 12)

 The information about the servers are
continuously updated using the cron
jobs. The information’s previous update
was made Aug 5 as can be seen at the
bottom of figure 12. All of these systems
are interconnected resulting in one large
cohesive farm unit. Enabling users to
access and monitor the farms in an
effective and efficient manner.

Conclusion

The monitoring and
concatenation systems at the CDF Farms
are an essential part to its function. The
monitoring system obtained the needed
modifications. The concatenation aspect
of the project received several changes.

Solomon Mikael

9

This system is nearly operational. The
benefits for operating in the new
configuration are significantly larger.
Removing the concatenation from the
stager and to the workers will help
improve the rate at which information is
written to the tape drives. The Monte
Carlo events as well as ntuples will be
able to benefit from these modifications.
In the future when this project is fully
implemented its true benefits can be
seen.

Acknowledgments

I would like to thank my
supervisor Elena Vataga for showing an
indispensable amount of patience. I
cannot recall when she did not make
time to address my questions. I would
also like to thank Murat Pavel. Murat
would always find time to squeeze me
into his busy schedule. I learned many
things from the both of them. Last but
not least the SIST committee and the
individuals affiliated, for giving me this
opportunity to explore my interests.

References

 1. High Energy Physics Information
Ceter Feb 14, 2002 , http://www.hep.net/

2. Collidewr Detector at FermiLab Aug
2006 http://www-
cdf.fnal.gov/about/index.html

3. SAM Home Page March 2 2006
http://d0db.fnal.gov/sam/

4. Condor Project Homepage August
2006 http://www.cs.wisc.edu/condor/

5. Concurrent Versions System August
2006

http://en.wikipedia.org/wiki/Concurrent_
Versions_System

6. MySQL AB August 2006
http://www.mysql.com/

7. Tikiwiki: The Tikiwiki Community
August 2006 http://tikiwiki.org/

